

Tetrahedron: Asymmetry 12 (2001) 1621-1624

Conformational diastereoisomers of PPh₃ coordinated to stereogenic metal centres as molecular optical switches

Andrew P. Ayscough, a James F. Costellob, and Stephen G. Daviesa, and Stephen G. Daviesa,

^aDyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, UK ^bDepartment of Chemistry, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK

Received 23 May 2001; accepted 29 May 2001

Abstract—The specific rotation of $(R_{\rm Fe},R,M)$ -4 switches sign upon epimerisation to $(R_{\rm Fe},S,P)$ -5. X-Ray crystallographic studies suggest that inversion of the propeller configuration of the coordinated PPh₃ ligand is a major contributor to the switch of specific rotation. A simple model for predicting the conformational diastereoisomeric forms of PPh₃ is presented, suggesting future routes towards the design of molecular optical switching devices. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Correlating the conformations of chiral molecules with macroscopic phenomena such as optical rotation¹ provides a rational basis for the design of molecular switching devices.² The explosion of interest in chiral optical switches³ for molecular information storage systems has relied chiefly upon the reversible inversion of helical chirality.4 Although the solid-state enantiomeric conformations (M and P) of metal coordinated PPh₃ 1 (Fig. 1) have been characterised many times,⁵ to our knowledge the diastereoisomeric conformational control of such systems has yet to be addressed. We have previously rationalised the conformational preferences of molecular propellers in achiral, 6,7 prochiral and stereogenic⁹ complexes. We now report optical switching in chiral organometallic complexes of type 2, which we postulate to derive from the chiral propeller conformations adopted by the coordinated PPh₃ ligand.

2. Results and discussion

The complex $(R_{\rm Fe},R)$ -4 may be prepared as previously reported in the racemic series via the diastereoselective reduction of the enantiomerically pure alkoxycarbene $(R_{\rm Fe})$ -3[†] in 92% yield (Scheme 1). Subsequent epimerisation of $(R_{\rm Fe},R)$ -4 with SiO₂ affords the thermody-

Solid-state studies by others and ourselves demonstrate that chiral complexes of the form $[M(\eta^5-C_5H_5)(PPh_3)-(L^1)(L^2)]$ **2** exist as conformational diastereoisomers by virtue of the stereogenic propeller configurations (*P* or *M*) of the coordinated ligand PPh₃ **1** (Fig. 1).¹¹ For

P-1

M-1

$$L^2$$

M = Fe

 L^1 = -CHO

 L^2 = -CO

Figure 1. Stereogenic propeller configurations P-1 and M-1, the generic complex 2, and 6.

namically preferred complex $(R_{\rm Fe},S)$ -5 in 98% yield. In common with enantiomerically pure complexes of R configuration at iron (irrespective of the stereochemistry, which may be present within the organic fragment L¹) the specific rotations of $(R_{\rm Fe})$ -3 $\{[\alpha]_{\rm D}^{20} = -321\ (c\ 0.059,\ {\rm CHCl_3})\}$ and $(R_{\rm Fe},S)$ -5 $\{[\alpha]_{\rm D}^{20} = -320\ (c\ 0.042,\ {\rm C_6H_6})\}$ are negative. Remarkably, the specific rotation of $(R_{\rm Fe},R)$ -4 $\{[\alpha]_{\rm D}^{20} = +535\ (c\ 0.065,\ {\rm C_6H_6})\}$ is not only opposite in sign to both $(R_{\rm Fe})$ -3 and $(R_{\rm Fe},S)$ -5, but differs in magnitude by 855. Thus, epimerisation of $(R_{\rm Fe},R)$ -4 $(R_{\rm Fe},S)$ -5 is accompanied by a switch in the sign of specific rotation.

^{*} Corresponding authors. E-mail: james.costello@uwe.ac.uk; steve. davies@chem.ox.ac.uk

[†] Experiments were conducted upon the $S_{\rm Fe}$ series, but for clarity of exposition we discuss the degenerate $R_{\rm Fe}$ series here.

$$(R_{\text{Fe}}P)\text{-3} \qquad (R_{\text{Fe}}R,M)\text{-4} \qquad (R_{\text{Fe}}S,P)\text{-5}$$

$$(R_{\text{Fe}}S,P)\text{-5} \qquad (R_{\text{Fe}}S,P)\text{-5} \qquad (R_{\text{Fe}}S,P)\text{-5}$$

Scheme 1. Reagents and conditions: (i) NaBH₄, THF, -78°C; (ii) SiO₂, Et₂O.

example, the predominant conformational diastereoisomer observed in the series M=Fe and L²=CO is $(R_{\text{Fe}}S_{\text{Fe}},PM)$, e.g. 3 and 5 (Scheme 1). The X-ray crystal structure of (R_{Fe},S,P) -5 (viewed along C_{α} -Fe bond axis, Fig. 2b) is consistent with this observation.¹²

Figure 2. The X-ray crystal structures of: (a) (R_{Fe}, R, M) -4 and (b) (R_{Fe}, S, P) -5a (viewed along Fe \rightarrow P).

However, the corresponding view of the X-ray crystal structure of $(R_{\rm Fe},R,M)$ -4 (Fig. 2a) demonstrates the presence of a conformational diastereoisomer of opposite propeller configuration. The difference in optical properties therefore provides compelling evidence for a connection between the conformational diastereoisomers $(R_{\rm Fe},R,M)$ -4 and $(R_{\rm Fe},S,P)$ -5 in the solid state and in solution. Furthermore, this is consistent with the PPh₃ rotor configuration being the major contributor to the change in sign of the specific rotation.

A series of calculations supported by extensive X-ray crystal structure correlations serve to establish the origin of this conformational anomaly with a view to understanding and ultimately controlling diastereoisomeric conformations of (PM)-1. Complexes such as 2 adopt a pseudo-octahedral geometry where the monodentate ligands (PPh₃, L¹ and L²) are essentially orthogonal to each other, occupying adjacent sites of an octahedron. The η⁵-C₅H₅ ligand occupies the three remaining coordination sites. A Newman projection (viewed along L^1 –M) of (R)-6 (2, where L^1 = -CHO and $L^2 = CO$, Fig. 3a) demonstrates the three quadrants¹³ A-C available for occupation by L¹. Quadrant A is the least sterically demanding site for occupation by atoms or groups associated with L^1 . Quadrants $B \rightarrow C$ are progressively less accessible to L^1 . Penetration of atoms or groups associated with L1 below the plane defined by L^1-M-L^2 into quadrants **B**/**C** clearly affect the conformational preferences of the PPh3 ligand. Calculations[‡] were performed to characterise the preferred conformational diastereoisomeric arrangements of PPh₃ in (R)-6 as the oxygen atom of L¹ is driven through quadrants $A \rightarrow B \rightarrow C$. The torsion angle P-Fe-C(H)=O (Φ) was driven through the range $0 \rightarrow$ 360° in 15° increments. At each point, the PPh₃ fragment in (R)-6 was subjected to a full conformational analysis. The initial symmetry of PPh3 for each set of calculations was $C_{3\nu}$ [i.e. C_o – C_i –P–M (ω) for all three rings=0°]. A phenyl ring of the PPh₃ fragment was placed between the η^5 -C₅H₅ and CO ligands (via P–M bond rotation) and then driven through the range $\omega_1 = 0 \rightarrow 180^{\circ}$ in 10° increments. At each increment, the two remaining rings were also driven independently

^{*} Calculations⁷ were conducted using the Chem-X package (1999.2) supported on the Windows NT platform using a Pentium personal computer. Chem-X is distributed by Chemical Design Ltd., Oxford Molecular Group, The Medawar Centre, Oxford Science Park, Oxford OX4 4GA, UK.

(ω =0→180° in 20° increments) with concomitant minimisation about all rotatable bonds [P–C, M–P and M–(η^5 -C₅H₅)_{cent}] until the default energy convergence criteria was achieved. A plot of the thermodynamically preferred epimeric conformations [i.e. ($R_{\rm Fe}$,P) (\blacksquare) or ($R_{\rm Fe}$,M) (\square)] of the PPh₃ fragment within (R)-6 as Φ varies is presented in Fig. 4; identical arguments apply to the degenerate case of ($S_{\rm Fe}$,M) (\blacksquare) and ($S_{\rm Fe}$,P) (\square), respectively.

The thermodynamically preferred conformation of (R)-6 [and thus (S)-6] orients the formyl C(H)=0 group approximately *anti* to the M–CO bond $(\Phi = ca. -60^{\circ})$. This arrangement is accompanied by the $P(\blacksquare)$ propeller configuration of the PPh₃ fragment, i.e. (R_{Fe},P) . The *anti* $(\Phi = ca. -60^{\circ})$ epimeric conformational diastereoisomer (R_{Fe},M) -6, possessing an inverted propeller configuration, is calculated to be 8 kJ/mol higher in energy. The *syn* conformer $(\Phi = ca. +135^{\circ})$, which

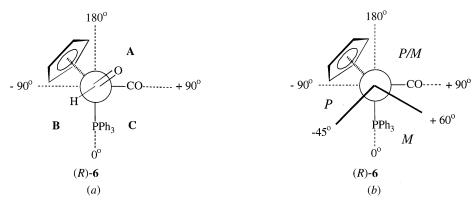


Figure 3. Newman projections of (R)-6 $(C_{\alpha} \rightarrow Fe)$ illustrating: (a) quadrants A-C and (b) zones of propeller preferences (monodentate ligands excluded for clarity). In the case of (S)-6, the propeller preferences are reversed.

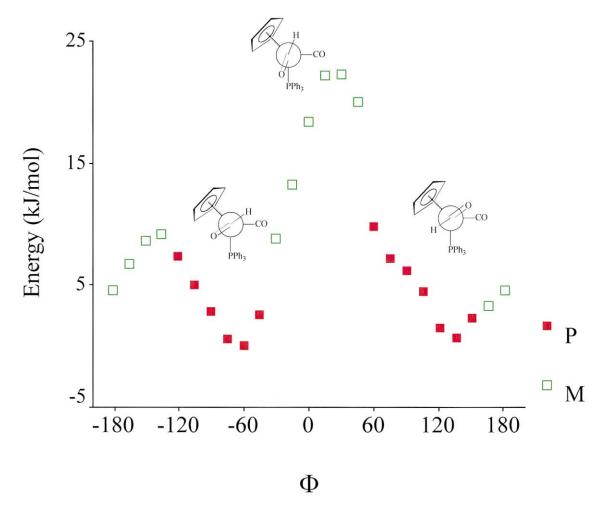


Figure 4. The thermodynamically preferred conformations of the PPh₃ fragment $[(R_{Fe}, P) \ (\blacksquare) \ \text{and} \ (R_{Fe}, M) \ (\square)]$ in (R)-6 as P-Fe-C(H)=O (Φ) is driven $0 \to \pm 180^{\circ}$.

also prefers the (R_{Fe}, P) arrangement, is similar in energy to the global minimum ($\Delta E = 0.5 \text{ kJ/mol}$). Fig. 4 demonstrates, however, that the rotation of the formyl group from anti (Φ = ca. -60°) to syn (Φ = ca. +135°) is accompanied by an inversion of the stereogenic sense of the propeller configuration of the PPh₃ ligand, at $\Phi \approx$ -130, -45, +60 and +150°. The relationship between the orientation of the oxygen atom associated with the formyl ligand (Φ) and the preferred conformational diastereoisomeric forms of (R)-6 are summarised in Fig. 3b. The P propeller configuration is clearly favoured as the oxygen atom of the formyl group penetrates quadrant **B** ($\Phi = -90 \rightarrow -45^{\circ}$). The overall energy of the system increases to a maximum as the oxygen atom passes through quadrants $\mathbf{B} \rightarrow \mathbf{C}$ ($\Phi =$ $-45 \rightarrow 0 \rightarrow +60^{\circ}$), eclipsing the M-P bond en route. Throughout this range (R_{Fe}, M) -6 is favoured over (R_{Fe}, P) -6 by up to 25 kJ/mol. As the oxygen atom approaches quadrant A ($\Phi = +60 \rightarrow +90 \rightarrow 180^{\circ}$), the energy difference between (R_{Fe}, P) -6 and (R_{Fe}, M) -6 is calculated to be small, leading one to expect a mixture of both diastereoisomeric conformations.

All available crystallographic data§ associated with complexes of type 2 (M=Fe, Re, Cr and Ru; $L^1 = \eta^1$ ligand and L^2 =CO or NO) are consistent with this model. In general, atoms or groups associated with L¹ dictate which conformational diastereoisomer is observed in the solid state. Conformational locking, resulting in the penetration of a sterically demanding atom or group (i.e. >H or $\sigma_{\rm nb}$) into quadrants **B/C** $(\Phi = -45 \rightarrow 0 \rightarrow +60^{\circ}, \text{ Fig. 2b}), \text{ confers the } (R_{\text{M}}S_{\text{M}}, MP)$ conformational diastereoisomer. The alternative and more commonly encountered $(R_{\rm M}S_{\rm M},PM)$ arrangement is favoured when the penetrating atoms/groups lie in the range $\Phi = -45 \rightarrow \approx -90^{\circ}$. When penetrating atoms/ groups lie in the range $\Phi = +180 \rightarrow \approx +60^{\circ}$, there can be no interference with the PPh₃ ligand and therefore mixtures of conformational diastereoisomers are observed.

As predicted by the model and as observed in the solid state for $4 [\Phi = +44^{\circ}, \text{ for } (R_{\text{Fe}}, R, M)]$, penetration of the oxygen substituent into quadrant C confers a preference for the (R_{Fe}, R, M) epimer (Scheme 1). Epimerisation of 4 reorients the oxygen substituent away from zone C $[\Phi = -90^{\circ}, \text{ for } (R_{\text{Fe}}, S, P)]$, thereby favouring the alternative conformational diastereoisomer (R_{Fe}, S, P) -5.

3. Conclusion

In conclusion, for the $R_{\rm Fe}$ complexes, the propeller configuration of PPh₃ switches from (M)- $4 \rightarrow (P)$ -5 on epimerisation at the α centre with a concomitant change in specific rotation from +535 to -320. Complexes designed to undergo controllable reversible optical switching using the above conformational analysis are currently being investigated.

Acknowledgements

The authors would like to thank the Royal Society of Chemistry and the Leverhulme Trust for their support (J.F.C.).

References

- Kondru, R. K.; Wipf, P.; Beratan, D. N. J. Phys. Chem. A 1999, 103, 6603.
- Kondru, R. K.; Wipf, P.; Beratan, D. N. Science 1998, 282, 2247.
- Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789.
- (a) Zahn, S.; Canary, J. W. Science 2000, 288, 1404; (b) Huck, N. P. M.; Jager, W. F.; de Lange, B.; Feringa, B. L. Science 1996, 273, 1686; (c) Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152.
- 5. For a recent example, see: Dance, I.; Scudder, M. J. Chem. Soc., Dalton Trans. 1 2000, 1579.
- Costello, J. F.; Davies, S. G. J. Chem. Soc., Perkin Trans. 2 1998, 1683.
- Barucki, H.; Coles, S. J.; Costello, J. F.; Gelbrich, T.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1 2000, 2319
- 8. Costello, J. F.; Davies, S. G.; McNally, D. *J. Chem. Soc.*, *Perkin Trans.* 2 **1999**, 465.
- Barucki, H.; Coles, S. J.; Costello, J. F.; Hursthouse, M. B. J. Organomet. Chem. 2001, 622, 265.
- Ayscough, A. P.; Davies, S. G. J. Chem. Soc., Chem. Commun. 1986, 1648.
- 11. For example, see: Garner, S. E.; Orpen, A. G. *J. Chem. Soc.*, *Dalton Trans.* 1 **1993**, 533.
- 12. Davies, S. G.; Blackburn, B. K.; Whittaker, M. In *Stereochemistry of Organometallic and Inorganic Compounds*; Bernal, I., Ed.; Elsevier: Amsterdam, 1989; Vol. 3, p. 141.
- 13. Blackburn, B. K.; Davies, S. G.; Sutton, K. H.; Whittaker, M. Chem. Soc. Rev. 1988, 17, 147.

[§] Crystal structures were located within the October 1999 release of the Cambridge Structural Database (207,507 entries) using the QUEST program. Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem. Inf. Comput. Sci. 1996, 36, 746. Supplementary data supplied.